sebis TUT

Automated Unit Testing of Solidity Smart Contracts in an
Educational Context

———

Batuhan Erden 11.12.2023, Master’s Thesis in Informatics

Chair of Software Engineering for Business Information Systems (sebis)
Department of Computer Science

School of Computation, Information and Technology (CIT)

Technical University of Munich (TUM)

wwwmatthes.in.tum.de

Outline

Motivation

Problem Statement

Research Questions

Comparison of Test Runner Frameworks
Developing a Learning Platform

Results and Analysis

Summary

NS Ok owbdhd=

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context

© sebis

Motivation Tum

= Rising prevalence of blockchains
» Blockchain integration in educational curricula (e.g., BBSE ' course at TUM)
= Shift towards decentralized computing
» Ethereum and Solidity smart contracts
= Cruciality of testing smart contracts for vulnerabilities
= Growing focus on smart contract testing in education
» Encouraging student engagement in exercises
» BBSE statistics: ~800 students registered, yet only a few exercise downloads
» Enhancing student participation through gamification strategies (leaderboards, gas usage tracking)

Gas as a Unit of Work. Dannen [1] describes gas in Ethereum as a unit of work, which quantifies the computational effort required for operations and
transactions, where the total fee incurred is calculated by multiplying the total amount of gas used by the price paid for the gas.

" Blockchain-based Systems Engineering

[1] C. Dannen. Introducing Ethereum and Solidity. Vol. 1. Springer, 2017.

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context © sebis 3

Problem Statement UM

We claim that this testing service will significantly contribute to the technological developments in educational settings,
aiding students in creating more secure and reliable smart contracts before deploying them in critical applications.

Smart
Contract
Project Input
g Testing <
< Service >
Instructor Student
= Ability to test their contracts
_ Test , ,
Project - » Enhanced learning experience
: Execution o .

Information Results ™ Elimination of the requirement

to create their own tests

S = Smooth and hassle-free user
toragel experience
(Databases, Docker images, etc.)

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context © sebis 4

Automated Smart Contract Tester

— 131.169.30.97

Log in

Email

Pas

sword

LOG IN

Copuyright 2023

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context

Batuhan Erden

LOG IN

SIGN UP

© sebis

Problem Statement — Main Challenges of Smart Contract Testing TUT

= Unlike the execution of traditional programs, limited execution time and resources (e.g., set by metrics like
gas usage) are involved.

= A blockchain is simulated.
» The blockchain is immutable; therefore, the deployment of reliable code is crucial.
= Smart contracts can be highly complex due to their self-executing nature.

» The significance of scalability is crucial in educational contexts, especially when the system experiences its
highest loads during peak hours.

» Test runner frameworks are required to test smart contracts.

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context © sebis 6

Research Questions

RQ1 What are the requirements for educational unit testing?
A. What is the core use case?
B. What are exemplary exercises that we would like students to do?

RQ2 What is the status quo in automated smart contract testing?
A. Are there examples of smart contract testing as a service?
B. Which tools are most commonly used for smart contract testing?
C. How can we characterize those tools in terms of their key features
and performance measurement capabilities?

RQ3 What do we have to consider regarding security and stability when

using a testing tool in a way that is not entirely intended?
A. How can errors and crashes in the contract execution be handled?
B. What measures do we need to take to prevent accidental or intentional system overload?

RQ4 How can a learning platform giving feedback through automated

smart contract unit testing be developed?
A. What considerations need to be made to ensure the service is scalable and expandable?

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context

TUTI

* Requirements

Engineering

« Use Case

Definition

e Literature Review
+ Comparative

Analysis

* Design
* Implementation
+ Testing

© sebis 7

Test Runner Frameworks — Most Commonly Used Ones and Overview TUT

Test runner frameworks are the software frameworks or platforms that facilitate the development,
deployment, and testing of smart contracts on blockchain platforms.

C

TRUFFLE

¢ Hardhat

» Truffle was the initial smart contract framework.
» Hardhat followed later and rose to become a major competitor.
» Foundry is emerging as a rising star, distinguished by its remarkably swift testing speed.

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context © sebis 8

Test Runner Frameworks — Key Comparative Factors Tum

= Development experience (installation, setup, and documentation)

= Testing capabilities

» Test result reporting capabilities (e.g., accurate gas consumption results)
= Performance

= Containerization capabilities

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context © sebis 9

Test Runner Frameworks — Performance Results

Compilation and Testing Time (Seconds)

Compilation & Test Execution Times of Frameworks

Vending Machine and BBSE Bank 2.0

o
1

w
1

E
1

w
1

N
1

N (X5

—@— Truffle (ubuntu)
—O— Hardhat (ubuntu)
—O— Foundry (ubuntu)

4.98s (+ 2.27s)

2.99s (4 1.09s)[O

1.59s (+ 0.63s)[©

Vending Machine

BBSE Bank 2.0
Smart Contract Project

Project
Framework

Vending Machine BBSE Bank 2.0
Truffle 2.71s 4.98s
Hardhat 1.90s 2.99s
Foundry 0.96s 1.59s

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context

© sebis

10

Test Runner Frameworks — Performance Results (Containerized) Tum

Test Execution Times with Containerization Versions

Vending Machine BBSE Bank 2.0
15
91 ol2E -@— Truffle (ubuntu) o 1256 -@— Truffle (ubuntu)
\\\\ ~O- Hardhat (ubuntu) 14 \\\ ~O- Hardhat (ubuntu)
h Rl TNy -@-- Foundry (ghcr.io/foundry-rs/foundry) \‘\\ -@-- Foundry (ghcr.io/foundry-rs/foundry)
&1 \\‘\' (7-695) —-@- Foundry (ubuntu) 131 T O~ Foundry (ubuntu)
N . N
7 < (11:299]
1 e e
\
\

=
15}
L

S
e
)
.
.

N
1 .
\
7.29 (7.29s)
, 707 g PALEES

“
N ;
“ i]
44 AN AN
3585 o358 . 64 \Q@ S
v \\ \\
N N
3 AN 577 54 AN
2685 o N 2725 \
“ .
N 4 N
2 g . 5
1.76s
[L769 5 3 N
N 1.33s N 2.42s
.
[L.025) N 5 \
] 0.71s R T42s R
o0 °) ol ®

T
vl v2 v3 Not Containerized vl V2 v3 Not Containerized
Docker Container Version Docker Container Version

Test Execution Time (Seconds)
Test Execution Time (Seconds)
<]

Containerization Version

Project Framework vl v2 v3 Not Dockerized
Truffle (ubuntu image) 470s 3.58s - 2.72s
. . Hardhat (ubuntu image) 431s 2.68s - 1.33s
Vending Machine - ¢ dry (ubuntu image) 1.76s 102s 0.71s 0.70s
Foundry (foundry-rs image) 8.88s 7.69s 5.28s 0.70s
Truffle (ubuntu image) 827s 7.29s - 497s
Hardhat (ubuntu image) 7.02s 6.03s - 242s
BBSE Bank 2.0 Foundry (ubuntu image) 2.76s 1.52s 1.42s 1.33s
Foundry (foundry-rs image) 14.56s 11.29s 10.91s 1.33s

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context © sebis 11

Developing a Learning Platform

Host

The Testing Service

-

Send messages
(e.g. Project Upload, Exercise Submission)

Docker Compose Project‘

\

Docker Container

RabbitMQ Instance

Return Replies

—— >

Consume messages and return results
(e.g. Test Execution Results)

Authentication

-)
Docker Container

Backend Services

Send requests to
REST APIs

Test Runner

~
Docker Container

Return execution output

- ————q
|

Docker Daemon

HIRRRARNRNI)

Docker Containers

/var/run/docker.sock

}

Build Docker images / Launch Docker containers

Return responses

‘Producer

. 3\
Docker Container

Frontend Application

Standard
Queue
Technique

WRabbit

Docker
Engine

Message 1 | %

Message 2

Message 3 I E 3

Consumer 1

Fan-out
Exchange
Technique

WRabbit
Consumer 2 producer

Consumer 3

v

Message 1 %

Consumer 1

Consumer 2

Message 1 E 3

Consumer 3

Docker
Client

| —

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context

Docker-in-Docker

Socket Mounting

[2] A. Mouat. Docker. O’Reilly Japan, Incorporated, 2016.

© sebis 12

Results and Analysis — Security and Stability

ALL PROJECTS B

PROJECT UPLOAD & ALL SUBMISSIONS ¢/> SUBMISSION UPLOAD & CONTAINER OUTPUT I

Container Execution Results

Project: bbse-bank-2.0
Container: objective_chatelet
Command Executed: forge snapshot --silent -vv ~allow-failure ~json ~diff .gas-snapshot

. Project
Test # Passing Docker . . Execution # # Total Gas Total Gas
imeou
Contracts Tests Status Exit Code) Time (sec) Passed Failed Usage Change
s
6 27 Failed 0 20 157 25 2 6250823 +34922
Test Results

y Error: The total deposit amount should be equal to the amount deposited

Search
BBSEBankTest_SuccessScenarios test_2_{
BBSEBankTest_SuccessScenarios test_3_SucceedIf_DepositSucceeds Failure 123131 +15331
BBSEBankTest_SuccessScenarios test_4_Succeed|f_WithdrawalSucceeds Failure 23227 +13743
BBSEBankTest_SuccessScenarios test_5_SucceedIf_BorrowingSucceeds Success 616611 +440
BBSERankTest SuccessScenarios test 6 Succeed!f PauinaloanSucceeds Success 571571 +440

ALL PROJECTS B

Test Execution with Failing Tests

PROJECT UPLOAD & ALL SUBMISSIONS ¢/> SUBMISSION UPLOAD & CONTAINER OUTPUT &

Container Execution Results

Project: bbse-bank-2.0
Container: elegant_goldstine
Command Executed: forge snapshot --silent -vv --allow-failure --json --diff .gas-snapshot

Test # # Total Gas Total Gas
Contracts Passed Failed Usage Change
Test Results
Search
Test Contract Test Status Gas Usage Gas Change

No data available

Test Execution Timeout

Total Gas
Change %

+0.56%

0%
+14.22%
+629%
+0.07%

+0.08%

Total Gas
Change %

Gas Change %

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context

ALL PROJECTS B

ALL PROJECTS B

PROJECT UPLOAD & ALL SUBMISSIONS ¢/> SUBMISSION UPLOAD &

Container Execution Results

Project: bbse-bank-2.0
Container: vigorous_villani
Command Executed: forge snapshot -silent -v --allow-failure -json -~dif .gas-snapshot

Project

Test # Passing Docker Timeout Execution # # Total Gas
imeou
Contracts Tests Status Exit Code (50 Time (sec) Passed Failed Usage
6 27 Failed 4 20 167 26 1 6179185
Test Results
Search

BBSEBankTest_SuccessScenarios test_4_SucceedIf_WithdrawalSucceeds 218528

BBSEBankTest_SuccessScenarios

BBSEBankTest_SuccessScenarios test_6_SucceedIf_PayingLoanSucceeds Failure 680368
BBSETokenTest_FailureScenarios test_1_Revertwhen_NonMinterPassesMi Succ 1452
BBSETokenTest_FailureScenarios test_2_RevertWhen_NonMinterMintsTok. Success 1207

CONTAINER OUTPUT

Total Gas

Change

-36716

4109237

0

0

Test Execution with Contract Error

PROJECT UPLOAD & ALL SUBMISSIONS ¢/> SUBMISSION UPLOAD &

Container Execution Results

Project: bbse-bank-2.0
Container: recursing_swanson

CONTAINER OUTPUT &

Command Executed: forge snapshot --silent -vv --allow-failure --json --dliff .gas-snapshot --gas-limit 7000000

Project
Test # Passing Docker Timeout Execution # # Total Gas
Contracts Tests Status Exit Code pu Time (sec) Passed Failed Usage
6 27 Failed 0 20 169 26 1 18535123
Test Results
Search
BESEBANK [ST_SUCCEssSCenarios TeST_5_SUCCeeaiT_Uepositsucceeds Success 10/800
BBSEBankTest_SuccessScenarios test_4_Succeedlf_WithdrawalSucceeds Success 218528
BBSEBankTest_SuccessScenarios test_5_Succeedlf_BorrowingSucceed 616171
BBSEBankTest_SuccessScenarios test_6_Succeedlf_PayingLoanSucceeds Failure 6880590
BBSETokenTest_FailureScenarios test_1_Revertwhen_NonMinterPassesMi Success 11452

Test Execution with Excessive Gas Usage

Total Gas
Change

+12519222

+6309459

Total Gas
Change %

-059%

0%
0%
+913%
0%

0%

Total Gas
Change %

+19819%

%
0%
0%

+1104.73%

0%

© sebis

13

Results and Analysis — Efficiency and Performance TUT

Total Processing Time for Simultaneous Execution of All Submissions

Number of Simultaneous Hardware Setting

Submissions 10-core CPU° 2-core CPU’
1 2.18s 4.17s
10 4.84s 21.72s
20 11.96s 42.01s
50 21.29s 103.25s
100 42.79s 209.44s
250 99.68s > 500s
500 209.30s > 500s

2 Apple M1 Pro (2021, 10-core CPU, 16 GB RAM,).

3 A machine with 2 CPU cores allocated from an Intel® Xeon® CPU E5-2697A v4 @ 2.60GHz and 4 GB RAM.

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context © sebis 14

Automated Smart Contract Tester

Summary

What are the requirements for educational What is the status quo in automated smart What do we have to consider

unit testing? contract testing? regarding security and stability when
using a testing tool in a way that is not

Empowering student development = Contrasting smart contract testing entirely intended?

*+ How can a learning platform giving

through tailored exercises within the against traditional program testing feedback through automated smart
core use case. to highlight differences. contract unit testing be developed?
» |dentification of Foundry as the
optimal framework for smart Development of a robust testing
contract testing, based on various service aligned with the core use
key comparative factors: case requirements:
= Usability ' = Ensuring security
= Development experience = Guaranteeing stability
* Features = Optimizing efficiency
= Performance N = Providing horizontal
= Containerization capabilities scalability

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context © sebis 15

Batuhan Erden

batuhan.erden@tum.de

Technical University of Munich (TUM)
TUM School of CIT

Department of Computer Science (CS)
Chair of Software Engineering for Business
Information Systems (sebis)

Boltzmannstrale 3
85748 Garching bei Minchen

http://wwwmatthes.in.tum.de/

Background — A Simple Smart Contract TUT

A Simple Smart Contract to Deposit/Withdraw Funds

pragma solidity ~0.4.17;

5 contract SimpleDeposit {
4

5 mapping (address => uint) balances;
event LogDepositMade(address from, uint amount);

9 modifier minAmount (uint amount) {
10 require(msg.value >= amount) ;

11 -

12 }

13

14 function deposit() public payable minAmount(1l ether) {
15 balances [msg.sender] += msg.value;

16 LogDepositMade (msg.sender, msg.value);

1 }

18

19 function getBalance() public view returns (uint balance) {
20 return balances[msg.sender];

21 }

2 function withdraw(uint amount) public {

24 if (balances[msg.sender] >= amount) {

25 balances [msg.sender] -= amount;

2 msg.sender .transfer (amount) ;

2 }

28 }

2}

Source: [3]

[3] M. Wéhrer and U. Zdun. “Smart contracts: security patterns in the ethereum ecosystem and solidity”. In: 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE). IEEE. 2018, pp. 2-8.

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context © sebis 17

Background — An Example of a Solidity Test Case

Example Solidity Test Case — Verifying Successful Deposit

// A helper function to deposit Ether into the bank from a specified user address
function depositToBank(address userAddr, uint256 amount) internal {

}

vm.roll(block.number + 1); // Increment block number by 1 to simulate a chain
vm.prank(userAddr); // Inject a change of user
vm.deal (userAddr, amount); // Deal Ether to that user

bbseBank.deposit{value: amount}(); // Deposit

// Test to verify that deposits are processed correctly
function test_3_SucceedIf_DepositSucceeds() public {

// Deposit Ether into the bank
uint256 depositAmount = 1 ether;
depositToBank (address(FIRST_ACC_ID), depositAmount);

// Check the account has been correctly registered as an investor at the bank
// after the deposit
(bool hasActiveDeposit, uint256 investorAmount, uint256 investorStartTime) =
bbseBank. getInvestor(address (FIRST_ACC_ID));
assertTrue(investorHasActiveDeposit,
"The investor should have an active deposit");
assertEq(investorAmount, depositAmount,
"The investor’s deposited amount should match the expected value");
assertGt(investorStartTime, O,
"The investor’s start time should be recorded and greater than 0");

// Check if the balance of the bank has been updated correcly after the deposit

assertEq(address (bbseBank) .balance, depositAmount,

"The bank’s balance should increase by the amount of the deposit");
assertEq(bbseBank.totalDepositAmount(), depositAmount,

"The bank’s total deposit amount should match the amount deposited");

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context

© sebis

18

Test Runner Frameworks — Containerization Capabilities (Image Sizes)

BBSE Bank 2.0 - Image Sizes with Containerization Versions

Framework Base Image

Containerization Version

vl v2 v3

Truffle ubuntu
Hardhat ubuntu
Foundry ubuntu

Foundry ghcrio/foundry-rs/foundry

1050 MB 1080 MB 1080 MB
612 MB 647 MB 647 MB
291MB 311MB 316 MB
113MB 133 MB 137 MB

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context

© sebis

19

Test Runner Frameworks — Containerization Capabilities (Scalability)

BBSE Bank 2.0

BBSE Bank 2.0 - Test Execution Times with CPU Core Counts

85
80 -
75
70
65 -
60 -
55
50 o
45 -
40 -
35 4
30 A
25
20
15 A
10 A

Test Execution Time (Seconds)

-@- Truffle (ubuntu)
-@©- Hardhat (ubuntu)
-©- Foundry (ubuntu)

&’ 1«:: @% @@ ﬁ@
.\,P‘ ‘5) .5) .
r\jNumber of CPUsﬁ.i ! !
CPU Core Count

Framework

0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.0 25 3.0

Truffle (v3) 8091s 40.70s 25.83s 20.37s 16.66s 14.60s 9.10s 7.97s 7.72s 7.53s

Hardhat (v3) 34.87s 24.20s 18.76s 15.38s 13.22s 1148s 7.37s 6.67s 6.39s 6.23s

Foundry (v3) 2.85s 2.35s 2.00s 1.78s 1.61s 148s 143s 142s 1.42s 1.42s

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context

© sebis

20

Developing a Learning Platform — High-Level Flow

Authentication Services Docker Controller Databases
| I f
\
[\
\
|

\
Student Instructor
\
|——1: Authenticate—p»
| |
b 2:Upload Exercise——— ——p
|

3 : Build Docker Image——
< — 4 : Return Docker Image ID— — — —

5 : Run Docker Container———p

< — —6: Return Test Names- — — — —
7 : Save Exercimi >
-+~ — — — — — 8 : Return Exercise Entity }— — — — — — — — —

\
\
\
\
\
\
\
\
\
\
\
\
} |- — — — 9:Return Exercise Details— — — — — — — : |
|
\ x | | | \
\ \ | \
| \
| \
| .
1

h_— 10 : Authenticate——— |

\ |

S — 11 : Submit Smart Contracts
1

v

12 : Query Exercise Data (e.g. Docker Image ID, Test Weights)——

14 : Save Submission (e.g. Submitted Code, Submission Date)——
|

< — -16: Return Test Results — — — —

\ |

\ |

\ |

\ |

| |

} | —— 15 : Run Docker Container——
|

\ |

| |

‘ | D 17 : Create Performance Metrics

| |

\

— — 19 Return Test Results and Performance Metrics— — — — — —

x | |

|
|
|
——18: Update Submission With Test Results and Performance Metrics—»
I
| |

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context © sebis 21

Backend Services

Developing a Learning Platform — Data Model

«interface»

Vi
ProjectConfi i
i g Project Submission «enumeration»
tests:_[Test_]] 1 | _id: objectid — | _ _cuses— _> TestStatus
containerTimeout: Number projectName: String _id: Objectld | usive. Failure. S
: . Obi . iect: Proi nconclusive, Failure, Success
testExecutionArguments: Object config: ProjectConfig 1 0.* Enl)i;cdt: Erfif;(;
0.% upload: Upload P ’ p
v testStatus: TestStatus testStatus: TestStatus
. results: Object MessageRequest
results: Object .
1 . _createdAt: Date
_createdAt: Date § R
- updatedAt: Date _updatedAt: Date _id: Objectld
«interface» _up! : 0. | deployer: User
Test 1 J 1 " | channel: String
contract: String completed: Bloole_an
test: String 1 (1 messagelnfo: Object
weight: Number User 7createdAt._Date
Upload _updatedAt: Date
I _id: Objectld
: _id: Objectid email: String 1
«interface» deployer: User word: Strin
File 0. files: [File] 0.* 1 FSZ?;UZer-ROIe 9 «enumeration»
T _createdAt: Date . . L — cuses — > UserRole
path: String ~UpdatedAt: Date _createdAt: Date > .
content: String _updatedAt: Date User, Admin
Test Runner
Dockerimage DockerContainerHistory «interface» «interface»
DockerContainerResults TestResult
_id: Objectld _id: Objectld - — —
imagelD: String 1_+| dockerimage: Dockerlmage 1 , | containerName: String contract: String
imageName: String "] status: Status cmd: String test: String
imageBuildTimeSeconds: Number purpose: ContainerPurpose timeoutValue: Number T status: String
imageSizeMB: Number container: DockerContainerResults executionTimeSeconds: Number reason: String
_createdAt: Date _createdAt: Date L_____ /_<> statusCode: DockerExitCode ™ logs: String
_updatedAt: Date _updatedAt: Date ‘l 1 output: TestOutput I gas: Number
i | ! gasChange: Number
1 | «use» gasChangePercentage: Number
. l
«use» | «enumeration» :
\Vi : DockerExitCode <)
«enumeration> «wger 0,1,125,, 137, ..., 255 «interface»
Status | OverallTestResults
1
Error, Failure, Success : - numContracts: Number
I «interface» numTests: Number
| 1 TestOutput passed: Boolean
i | e numPassed: Number
«enumeration» | data: String <>_/* numFailed: Number
ContainerPurpose <_ _ error: String 0. totalGas: Number
tests: [TestResult] totalGasChange: Numb
100 (Project Creation), 101 (Test Execution . ge: Number
(Proj) () overall: OverallTestResults 1 1| totalGasChangePercentage: Number

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context

© sebis

22

Developing a Learning Platform — Dockerfile for Project Image Creation Tum

1 # Use the latest Ubuntu image as the base

2 FROM ubuntu:latest

3

4 # Install essential utilities: curl & git

5 RUN apt-get -y update

6 RUN apt-get -y install curl

7 RUN apt-get -y install git

8

9 # Install Foundry

10 RUN curl -L https://foundry.paradigm.xyz | bash

11 ENV PATH="${PATH}:/root/.foundry/bin"

12 RUN foundryup

13

14 # Set the working directory to /app

15 WORKDIR /app

16

17 # Copy the configuration files into the container

18 COPY foundry.toml .

19 COPY remappings.txt .
20
21 # Install the libraries after copying the required files needed for that purpose into the container
22 COPY .gitmodules .

23 COPY install_libraries.sh .

24 RUN git init

25 RUN ./install_libraries.sh

26

27 # Copy the tests into the container

28 COPY test test

29

30 # (1) "forge build": Ensures that the compiler is pre-installed and the dependencies are pre-created
31 # (2) "forge snapshot": (1) + Generates gas snapshots for all the test functions using the solution (the src folder) provided
32 COPY src src

33 # RUN forge build (Redundant, as "forge snapshot" already compiles the project)
34 RUN forge snapshot --snap .gas-snapshot

35 RUN rm -rf src/*

36

37 # Remove the build artifacts and cache directories

38 RUN forge clean

39
40 # Run the tests (make sure to copy the "src" folder containing the implemented contracts before running the container!)
41 CMD ["forge", "test", "-vv"]

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context © sebis 23

Developing a Learning Platform — Horizontal Scalability TUT

The Testing Service Cluster Managed by Docker Swarm

~
Docker Swarm Service

Distributed RabbitMQ Cluster Docker Container
Across Multiple Nodes Backend Services
Fr————————9 MongoDB Atlas

| Docker Container |
| RabbitMQ Instance |
- — — J

Authentication
&
Authorization
Module

~ 1\
Docker Container

Test Runner

Ivar/run/docker.sock

Docker Daemon

| I Docker Containers

e

231211 Batuhan Erden Automated Unit Testing of Solidity Smart Contracts in an Educational Context © sebis 24

